Uncertainty Reduction in Collaborative Bootstrapping: Measure and Algorithm
نویسندگان
چکیده
This paper proposes the use of uncertainty reduction in machine learning methods such as co-training and bilingual bootstrapping, which are referred to, in a general term, as ‘collaborative bootstrapping’. The paper indicates that uncertainty reduction is an important factor for enhancing the performance of collaborative bootstrapping. It proposes a new measure for representing the degree of uncertainty correlation of the two classifiers in collaborative bootstrapping and uses the measure in analysis of collaborative bootstrapping. Furthermore, it proposes a new algorithm of collaborative bootstrapping on the basis of uncertainty reduction. Experimental results have verified the correctness of the analysis and have demonstrated the significance of the new algorithm.
منابع مشابه
A Robust Modeling Of Inventory Routing In Collaborative Reverse Supply Chains
This paper proposes a robust model for optimizing collaborative reverse supply chains. The primary idea is to develop a collaborative framework that can achieve the best solutions in the uncertain environment. Firstly, we model the exact problem in the form of a mixed integer nonlinear programming. To regard uncertainty, the robust optimization is employed that searches for an optimum answer wi...
متن کاملA New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation
Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...
متن کاملA NOVEL FUZZY-BASED SIMILARITY MEASURE FOR COLLABORATIVE FILTERING TO ALLEVIATE THE SPARSITY PROBLEM
Memory-based collaborative filtering is the most popular approach to build recommender systems. Despite its success in many applications, it still suffers from several major limitations, including data sparsity. Sparse data affect the quality of the user similarity measurement and consequently the quality of the recommender system. In this paper, we propose a novel user similarity measure based...
متن کاملA Collaborative Stochastic Closed-loop Supply Chain Network Design for Tire Industry
Recent papers in the concept of Supply Chain Network Design (SCND) have seen a rapid development in applying the stochastic models to get closer to real-world applications. Regaring the special characteristics of each product, the stracture of SCND varies. In tire industry, the recycling and remanufacturing of scraped tires lead to design a closed-loop supply chain. This paper proposes a two-st...
متن کاملDistribution network design under demand uncertainty using genetic algorithm and Monte Carlo simulation approach: a case study in pharmaceutical industry
Distribution network design as a strategic decision has long-term effect on tactical and operational supply chain management. In this research, the location-allocation problem is studied under demand uncertainty. The purposes of this study were to specify the optimal number and location of distribution centers and to determine the allocation of customer demands to distribution centers. The m...
متن کامل